Compactly supported (bi)orthogonal wavelets generated by interpolatory refinable functions
نویسندگان
چکیده
This paper provides several constructions of compactly supported wavelets generated by interpolatory reenable functions. It was shown in D1] that there is no real compactly supported orthonormal symmetric dyadic reenable function, except the trivial case; and also shown in L] and GM] that there is no compactly supported interpolatory orthonormal dyadic reenable function. Hence, for the dyadic dilation case, compactly supported wavelets generated by interpolatory reenable functions have to be biorthogonal wavelets. The key step to construct the biorthogonal wavelets is to construct a compactly supported dual function for a given interpolatory reenable function. We provide two explicit iterative constructions of such dual functions with desired regularity. When the dilation factors are larger than 3, we provide several examples of compactly supported interpolatory orthonormal symmetric reenable functions from a general method. This leads to several examples of orthogonal symmetric (anti-symmetric) wavelets generated by interpolatory reenable functions.
منابع مشابه
Compactly Supported (bi)orthogonal Wavelets Generated by Interpolatory Reenable Functions
This paper provides several constructions of compactly supported wavelets generated by interpolatory reenable functions. It was shown in D1] that there is no real compactly supported orthonormal symmetric dyadic reenable function, except the trivial case; and also shown in L] and GM] that there is no compactly supported interpolatory orthonormal dyadic reenable function. Hence, for the dyadic d...
متن کاملA Construction of Bi orthogonal Functions to B splines with Multiple Knots
We present a construction of a re nable compactly supported vector of functions which is bi orthogonal to the vector of B splines of a given degree with multiple knots at the integers with prescribed multiplicity The construction is based on Hermite interpolatory subdivision schemes and on the relation between B splines and divided di erences The bi orthogonal vector of functions is shown to be...
متن کاملWavelet Bi-frames with few Generators from Multivariate Refinable Functions
Using results on syzygy modules over a multivariate polynomial ring, we are able to construct compactly supported wavelet bi-frames with few generators from almost any pair of compactly supported multivariate refinable functions. In our examples, we focus on wavelet bi-frames whose primal and dual wavelets are both derived from one box spline function. Our wavelet bi-frames have fewer generator...
متن کاملExamples of Refinable Componentwise Polynomials
This short note presents four examples of compactly supported symmetric refinable componentwise polynomial functions: (i) a componentwise constant interpolatory continuous refinable function and its derived symmetric tight wavelet frame; (ii) a componentwise constant continuous orthonormal and interpolatory refinable function and its associated symmetric orthonormal wavelet basis; (iii) a diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. Comput. Math.
دوره 11 شماره
صفحات -
تاریخ انتشار 1999